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Sc;Ga; and Y;Ga; with D8; structure. By O. SceoB and E. Partag, Metallurgy Department and Laboratory
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(Received 6 March 1964)

In continuation of an investigation on the occurrence
of compounds with D8; structure (Parthé, 1957, 1958,
1959, 1960; Arbuckle & Parthé, 1962; Boller & Parthé,
1963a, b) the phases Sc;Ga; and Y;Ga; have been
synthesized. Induction melting of the metals mixed in
proper weight proportions in a boron nitride crucible
under argon has given homogeneous samples of Sc;Gag
and Y;Gas.

The X-ray diffraction patterns of the gallides could
be indexed with a hexagonal unit cell with dimensions

Sc;Gag: a=8074+0-002, ¢=5951 +0-002 A

with ¢/a=0-737.
Y,Gay: a=8-576+0-008, c=6-479 +0-004 A

with c¢/a =0-755.

The systematic extinctions hOhl with {=2n+1 lead to
possible space groups P8s/mem (D3;), P6c2 (D%;), P6,em
(C3,), and P3cl (D}y).

The visual comparison with the powder patterns of
Sc,Ge, and Y;Ge, suggested immediately that the
gallides are isotypic with the germanides. The latter
were shown before to crystallize with the D8 structure
(Parthé, 1960; Arbuckle & Parthé, 1962). Thus an
intensity caleulation was performed for Sc;Ga; assuming
space group P6;/mcem (D3;) and placing 4Sc in 4(d),
6Sc in 6(g1) with 2y =0-25 and 6Si in 6(g11) with 13 =0-61.
Table 1 allows a comparison between calculated and
observed intensities. The good agreement leaves no
doubt that Sc;Gaj crystallizes with the D8g structure.
No intensity calculations have been made for Y;Ga,.
It was not felt necessary to do so as there was good
agreement between the diffraction pattern of Y ;Ge,
and that of Y;Ga,.

Including Scy;Ga, and Y ;Gaz; the total number of
known D8, phases has now increased to 46. An extensive
analysis of the D8; structure, its filled-in variations,
the so-called Nowotny phases and the TiGa,-type
compounds, its structural relationship to CagsPb; and
the apatite (H5,) structure and its variations will be
discussed at a later time when studies on other D8y
phases have been completed. Now only comments in
relation to gallides with D8, structure will be made.

Gallides with D8; structure are known with transition
metals of the 3rd group: Sc;Ga;, Y;Gag; 4th group:
Ti;Ga,, Zr;Ga; and Hf;Ga; (Boller & Parthé, 1963a);
and 5th group: VyGa;Cz;, Nb;Ga,C, and Ta;GazCs
(Jeitschko, Nowotny & Benesovsky, 1963; Schubert,
Frank, Gohle, Maldonado, Meissner, Raman & Ros-
steutscher, 1963). In analogy to D8; silicides, the
gallides of the 5th group need small amounts of
carbon or oxygen atoms as stabilizers. The &th
group D8; phases do not form as binary com-
pounds, while gallides with transition metals of the
4th group seemingly do not need stabilizer atoms or
only in extremely small amounts. The 3rd-group com-
pounds Sc;Ga,; and Y;Ga; are true binary phases.
However, samples of Sc;Ga,, which were annealed in

Table 1. Intensity calculation for Sc,Gas with D8 structure
(Cr K« radiaton)

hkil  do(A) 1000.sin%26, 1000.sin26, I, I,
1010  6-995 26,8 27,2 19-9 vw
1120  4-038 80,4 80,7 8-0 vow
2020  3-497 107,2 — 0-029 —
1121 3-341 117,4 118,1 17-8 ww
0002  2:977 148,0 147,7 32-8 w
1012 2-739 174,8 174,6 6-8 vvvw
2130 2-644 187,6 188,1 20-2 vw
2131 2-416 224,6 224,8 100 8
1122 2-395 228,4 229,1 81-3 ms
3030 2-331 241,2 241,0 52-3 m
2022  2-266 255,2 254,5 11-9 vow
2240 2-019 321,6 — 0-018 —_
2132 1-976 335,6 — 0-080 —
3140 1-940 348,4 348,8 5-7 vow
2241  1-912 358,6 358,8 9-2 vow
3141  1-844 385,4 385,8 22.7 vw
3032 1-835 389,2 389,2 55 W
1123 1-781 4134 — 2-8 —
4040  1-749 428,8 — 0-250 —
2242  1-671 469,6 468,6 154 vow
3142  1-625 496,4 — 0-020 —
3250 1-604 509,2 — 0-250 —
2133  1-587 520,6 520,9 27-4 w
3251  1-549 546,2 546,2 9-0 vow
4150  1-526 562,8 — 2-7 —
4042  1-508 576,8 576,5 57 wwow,d
0004 1-488 592,0 592,0 13-2 vow
4151  1-478 599,8 — 1-4 —
1014  1-456 618,8 — 0-6 —
2243 1415 654,6 5-2

3252 1412 657.2 } 657.8 10-6 } vow,d
5050  1-3986 670,0 669,4 87 vow
1124  1-3960 672,4 — 1-1 —
3143  1-3868 681,4 680,8 14-6 vow
2024  1-3691 699,2 — 0-020 —_
4152  1-3578 710,8 710,5 8-3 vovw,d
3360 1-3458 723,6 — 1-2 —
4260 1-3215 750,4 750,0 144 vow
3361 1-3127 760,6 760,5 10-7 vow
2134  1-2966 779,6 779,6 88 W
4261  1-2902 7874 786,8 23-2 vw
5052  1-2657 818,0 817,4 44-1 w,d
5160  1-2560 830,8 69

3034 12542 8332 } 8320 39-3 } wid
3253  1-2475 842,2 842,3 116 vow
5161  1-2289 867,8 \ 18-8

3362 12263 87,6 f 5080 64 } vow,d
4153  1-2095 895,8 — 2:3 —_
4262  1-2078 898,4 898,3 11-2 vovw
2244  1-1977 913,6 — 0-020 —

evacuated (104 mmHg) quartz tubes at 1200 °C for
4 hours showed a change in the lattice constants to:
a = 8059 +0-001, ¢ = 6:033+0-001 A and c/a = 0-749.
This is probably caused by the insertion of oxygen
atoms from the quartz into the D84 structure. In agree-
ment with this assumption is the observation that
samples which were heated for a longer time (40 hours)
under the same conditions have completely reacted with
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quartz, thereby forming elementary silicon and scandium
oxide.

The axial ratios of the unit cells of Sc;Ga; and Y;Gag
agree with the axial ratios of the six other known D8
phases containing S¢, Y or rare earth metals: Sc;Sis,
Se;Ge, Y58i,, Y;Ge,, LasGes and Cez;Geg. All these phases
have very high axial ratios of about 0-75 while the
axial ratios of the other known D8y phases are between
0-68 and 0-70. The characteristic high axial ratio of a
D8, phase with a metal of the third group is nearly
the same for gallide, silicide and germanide phase,
but changes slightly with the transition metal com-
ponent.
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The polyhalide ions in KICl,.H,0O (Mooney, 1937) and
in N(CH,),IC]l, (Mooney, 1939) aroused our interest as
the reported bond lengths are remarkably short in
comparison with those in other polyhalide ions (Elema,
de Boer & Vos, 1963). Refinement of the crystal struc-
ture of KICl,.H,O (Elema et al., 1963) showed that the
I-Cl bonds in the ICl; ion range from 2-42 to 2:60 A
and are thus considerably longer than the value deter-
mined by Mooney, 2-3¢ A. It will appear from this
paper that also in ICI; the bonds are long.

N(CH,),ICl, is tetragonal, space group P42,m, with
the two N(CHj), and ICl, groups in special positions
(Mooney, 1939). Cell dimensions determined from a
powder diffractogram with CaF, as a reference are
a=9-35, c=594 A with an e.s.d. of 2%,

Fig. 3 in Mooney’s paper shows that the I-Cl bond
length in the ICl; ion with symmetry 2 can be obtained
both from the [001] and from the [110] projection.
Intensities of 56 hk0 reflexions were measured from a
single crystal of dimensions 0-17 x0-25 x 0-28 mm by
counter techniques, 34 hhl reflexions were obtained from
integrated zero-layer Weissenberg photographs about the
[110] axis of a crystal with dimensions 018 x 0-10 x 0-20
mm, Molybdenum radiation, with balanced Zr and Y
filters and Zr-filtered Mo radiation respectively, was
used. Corrections for the Lorentz and polarization effect
and for absorption (¢=35'6 cm~!) were applied.

The [001] projection was refined first. Isotropic refine-
ment by successive Fourier syntheses failed to yield
satisfactory agreement between the observed and cal-
culated values of the individual structure factors. Good
agreement (R =0-041) was achieved by anisotropic least-
squares refinement which was kindly carried out by
Dr J. S. Rollett on the Mercury computer at Oxford.

The final coordinates listed in Table 1 and the thermal
parameters Uj;; (Cruickshank, 1956a) in Table 2 were

Table 1. Final coordinates

Atom x e.s.d. Y e.s.d. z e.s.d.
I 0 05 0-103, 0-001
Cl 0-193, 0-0015 0-693, 0-0015 0-105; 0-0025
N 0 0 0-5
C 0-108  0-003 0-063 0-003 0-350 0-005

Table 2. Thermal parameters Uy (A2) relative to
[110] (1), [110] (2) and 2(3)
The e.s.d. for Uy(I) and Uy(Cl) are 0-002 and 0:004 A2

respectively
Atom Un Uss Usg U Uss Uss
I 0-084 0-031 0-053 0 0 0
Cl 0-064 0-052 0-053 0 0 0¥
N 0-042 0-042 0-058 0 0 0
C 0-058 0-091 0-097 0-004 0-023 0-000

* U.5(Cl) was assumed to be zero during the refinement
in agreement with a rigid body description of the ICly ion;
the remaining zeroes are due to symmetry.

obtained by anisotropic least-squares refinement of the
34 reflexions Ah! and the 56 more accurately measured
reflexions hk0; a weighting scheme corresponding to
rough estimates of the experimental accuracy was applicd.
F,—F, syntheses of the two projections calculated
after the refinement showed only small changes, less
than 0-004 A, in the I-Cl bond length. The calculated
structure factors in Table 3 correspond to the parameters
in Tables 1 and 2. R=0-045.

In calculating the I-Cl bond length no correction for
thermal motion (Cruickshank, 1956b) could be applied
as may be seen from the parameters Uj; in Table 2
(CI-I-C1 along [110]). The difference Uyy(Cl) — Ugy(I),
which might be ascribed to libration, is approximately



